Authors
Lionel Fillatre, Igor Nikiforov,
Title
Learning-based epsilon most stringent test for Gaussian samples classification
In
Proceedings of IEEE International Symposium on Information Theory, Aachen, Germany
Pages
1366 – 1370
Publisher
IEEE
Year
2017
Indexed by
Abstract
This paper studies the problem of classifying some Gaussian samples into one of two parametric probabilistic models, also called sources, when the parameter and the a priori probability of each source are unknown. Each source is governed by an univariate normal distribution whose mean is unknown. A training sequence is available for each source in order to compensate the lack of prior information. An almost optimal most stringent test is proposed to solve this classification problem subject to a constrained false alarm probability. This learning-based test minimizes its maximum shortcoming with respect to the most powerful test which knows exactly the parameters of the sources. It also guarantees a prescribed false alarm probability whatever the size of the training sequences. The threshold, the probability of false alarm and the probability of correct detection are calculated analytically.
Affiliations
Offprint