Authors
Khemais Saanouni, Mohamed Hamed,
Title
Micromorphic approach of finite gradient-elastoplasticity fully coupled with ductile damage. Formulation and computational aspects
In
International Journal of Solids and Structures
Volume
50
Pages
2289–2309
Publisher
Elsevier
Year
2013
Publisher's URL
www.elsevier.com/locate/ijsolstr
Indexed by
Abstract
It is well established that the use of inelastic constitutive equations accounting for induced softening, leads to pathological space (mesh) and time discretization dependency of the numerical solution of the associated Initial and Boundary Value Problem (IBVP). To avoid this drawback, many less or more approximate solutions have been proposed in the literature in order to regularize the IBVP and to obtain numerical solutions which are, at convergence, much less sensitive to the space and the time discretization. The basic idea behind these regularization techniques is the formulation of nonlocal constitutive equations by introducing some effects of characteristic lengths representing the materials microstructure. In this work, using the framework of generalized nonlocal continua, a thermodynamically-consistent micromorphic formulation using appropriate micromorphic state variables and their first gradients, is proposed in order to extend the classical local constitutive equations by incorporating appropriate characteristic internal lengths. The isotropic damage, the isotropic and the kinematic hardenings are supposed to carry the targeted micromorphic effects. First the theoretical aspects of this fully coupled micromorphic formulation is presented in details and the proposed generalized balance equations as well as the fully coupled micromorphic constitutive equations deduced. The associated numerical aspects in the framework of the classical Galerkin-based FE formulation are briefly discussed in the special case of micromorphic damage. Specifically, the formulation of 2D finite elements with additional degrees of freedom (d.o.f.), the dynamic explicit global resolution scheme as well as the local integration scheme, to compute the stress tensor and the state variables at each integration point of each element, are presented. Application is made to the typical uniaxial tension specimen under plane strain conditions in order to chow the predictive capabilities of the proposed micromorphic model, particularly against its ability to give (at convergence) a mesh independent solution even for high values of the ductile damage (i.e. the macroscopic cracks). Keywords: Micromorphic continuum, nonlocal formulation, elastoplasticity, finite strain, mixed hardening, ductile damage, full coupling, micomorphic state variables, first gradients of the state variables, FEM, dynamic global resolution scheme, local integration scheme.
Affiliations
Offprint