Authors
Tong Qiao,
Title
Statistical Detection for Digital Image Forensics
Pages
181
Publisher
Troyes University of Technology
Year
2016
Indexed by
Abstract
The remarkable evolution of information technologies and digital imaging technology in the past decades allow digital images to be ubiquitous. The tampering of these images has become an unavoidable reality, especially in the field of cybercrime. The credibility and trustworthiness of digital images have been eroded, resulting in important consequences in terms of political, economic, and social issues. To restore the trust to digital images, the field of digital forensics was born. Three important problems are addressed in this thesis: image origin identification, detection of hidden information in a digital image and an example of tampering image detection: the resampling. The goal is to develop a statistical decision approach as reliable as possible that allows to guarantee a prescribed false alarm probability. To this end, the approach involves designing a statistical test within the framework of hypothesis testing theory based on a parametric model that characterizes physical and statistical properties of natural images. This model is developed by studying the image processing pipeline of a digital camera. As part of this work, the difficulty of the presence of unknown parameters is addressed using statistical estimation, making the application of statistical tests straightforward in practice. Numerical experiments on simulated and real images have highlighted the relevance of the proposed approach.
Affiliations
Offprint