Authors
Yishi Su, Di Zhang, Xiao-Lu Gong, Min Shen,
Title
Mchanical behavior in bending deformation of thermoplastic composite laminates with different stacking sequences
In
Journal of Composite Materials
Volume
50
Issue
8
Pages
1037–1048
Publisher
SAGE journals
Year
2016
Indexed by
Abstract
This work aims to numerically analyze the mechanical properties of thermoplastic composite laminates with the [0°/90°]4s, [±25°]s4 and [0°/±45°/90°]2s stacking sequences under three-point bending loading. Three-dimensional multilayer structural models of composite laminates are established and then orthotropic elastics, Hill yield criterion and isotropic hardening rule are applied on these structural models of composite laminates to conduct the bending mechanical deformation. Fine enough meshes and reasonable loads and boundary conditions can efficiently reduce the computing cost. Afterwards, three-dimensional fiber–matrix structural models with disordered fiber arrangements of 0°/90°, 25°/−25° and 0°/45° interlaminates at the free edges of composite laminates are also created, in which the boundary conditions are transferred step by step using a three-step structural submodeling. Once more, orthotropic elastics and isotropic hardening are applied on these fiber–matrix structural models. This work provides a good way to understand the bending mechanical behavior of thermoplastic composite laminates with different stacking sequences.
Affiliations
Offprint